翻訳と辞書
Words near each other
・ Dynamic software updating
・ Dynamic Source Routing
・ Dynamic speckle
・ Dynamic spectrum management
・ Dynamic Sport
・ Dynamic Sport Climber
・ Dynamic Sport Rocket
・ Dynamic SSL
・ Dynamic steering response
・ Dynamic stereochemistry
・ Dynamic Stillness
・ Dynamic stochastic general equilibrium
・ Dynamic stock modelling
・ Dynamic strain aging
・ Dynamic stretching
Dynamic structure factor
・ Dynamic Structures
・ Dynamic synchronous transfer mode
・ Dynamic systems development method
・ Dynamic Tension
・ Dynamic Terrain
・ Dynamic testing
・ Dynamic tidal power
・ Dynamic time warping
・ Dynamic timing verification
・ Dynamic Togolais
・ Dynamic tonality
・ Dynamic topic model
・ Dynamic topography
・ Dynamic Tower


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dynamic structure factor : ウィキペディア英語版
Dynamic structure factor
In condensed matter physics, the dynamic structure factor is a mathematical function that contains information about inter-particle correlations and their time evolution. It is a generalization of the structure factor which considers correlations in both space ''and'' time. Experimentally, it can be accessed most directly by inelastic neutron scattering.
The dynamic structure factor is most often denoted S(\vec,\omega), where \vec (sometimes \vec) is a wave vector (or wave number for isotropic materials), and \omega a frequency (sometimes stated as energy, \hbar\omega). It is defined as:〔


:S(\vec,\omega) \equiv \frac\int_^ F(\vec,t)\mbox(i\omega t) dt
Here F(\vec,t), is called the intermediate scattering function and can be measured by neutron spin echo spectroscopy. The intermediate scattering function is the spatial Fourier transform of the van Hove function G(\vec,t):〔G. Vineyard, "Scattering of Slow Neutrons by a Liquid", Phys. Rev. 110, 999-1010
(1958).〕
:F(\vec,t) \equiv \int G(\vec,t)\exp (-i\vec\cdot\vec) d\vec
Thus we see that the dynamical structure factor is the spatial ''and'' temporal Fourier transform of van Hove's time-dependent pair correlation function. It can be shown (see below), that the intermediate scattering function is the correlation function of the Fourier components of the density \rho:
:F(\vec,t) = \frac\langle \rho_} \rangle
The dynamic structure is exactly what is probed in coherent inelastic neutron scattering. The differential cross section is :
:\frac = a^2\left(\frac\right)^ S(\vec,\omega)
where a is the scattering length.
==The van Hove Function==
The van Hove Function for a spatially uniform system containing N point particles is defined as:〔
:G(\vec,t) = \langle \frac \int \sum_^\sum_^N \delta()\delta() d\vec' \rangle
It can be rewritten as:
:G(\vec,t) = \langle \frac\int \rho(\vec'+\vec,t)\rho(\vec',0) d\vec'\rangle
In an isotropic sample (with scalar ''r''), ''G(r,t)'' is a time dependent radial distribution function.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dynamic structure factor」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.